Decomposition of Clofibric Acid in Aqueous Media by Advance Oxidation Techniques: Kinetics Study and Degradation Pathway

^{1,2}Murtaza Sayed^{*}, ²Luqman Ali Shah, ¹Asad Muhammad Khan, ¹Rafaqat Ali Khan ¹Abdur Rahman Khan and ²Hasan Mahmood Khan^{**}

¹Department of Chemistry, COMSATS Institute of Information technology, Abbottabad, 22060, Pakistan. ²Radiation and Enviroenmental Chemistry Labs., National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan. murtazasayed@upesh.edu.pk*: hmkhan3@gmail.com**

(Recievd on 14th November 2015, accepted in revised form 13th May 2016)

Summary: This study investigates the decomposition of clofibric acid (CLF) by different advanced oxidation processes (AOPs), such as UV (254nm), VUV (185 nm), UV / TiO₂ and VUV / TiO₂. The removal efficiencies of applied AOPs were compared in the presence and absence of dissolved oxygen. The removal efficiency of the studied AOPs towards degradation of CLF were found in the order of VUV / TiO₂ + O₂ > VUV/TiO₂ + N₂ > VUV alone > UV / TiO₂ + O₂ > UV / TiO₂ + N₂ > UV alone. The decomposition kinetics of CLF was found to follow *pseudo*-first order rate law. VUV / TiO₂ process was found to be most cheap and effective one for decomposition of CLF as compared to other applied AOPs in terms of electrical energy per order. Degradation products resulting from the degradation processes were also investigated using UPLC-MS /MS, accordingly degradation pathway was proposed.

Keywords: Clofibric acid, Advance Oxidation Processes (AOPs), Decomposition kinetics, UPLC – MS /MS, Wastewater.

Introduction

Recently, many studies have been reported on the high-consumption of pharmaceuticals and their occurrence in the environmental matrices at very low concentrations [1]. Among such pharmaceuticals. clofibric acid (CLF) (2-(4chlorophenoxy)-2-methylpropanoic acid) is a widely used as blood lipid regulatory agent with therapeutic doses of about 1-2 g d^{-1} per person, since they decrease the plasmatic concentration of cholesterol and triglycerides [2, 3]. Clofibric acid is resistant to degradation because of its polar nature. CLF is detected in the concentrations of 1 up to 10 μ g L⁻¹ in sewage treatment plants, ground and drinking water [2, 4-6]. Advanced oxidation processes (AOPs) have recently emerged as an important class of technologies for the destruction of wide range of organic contaminants in water and waste water [7-10]. The AOPs are based on oxidizing radicals, mainly hydroxyl radicals, while other radicals and active oxygen species such as superoxide radical anions ('O₂'), hydroperoxy radicals (HO₂'-), triplet oxygen $({}^{3}O_{2})$ and organic peroxyl radicals (R-O-O') are also involved [10]. 'OH- radical is found to be a very strong oxidant with oxidation potential of 2.8 eV and can react with variety of pollutants at a very high reaction rate of $10^8 - 10^{10} \text{ M}^{-1} \text{s}^{-1}$ [11]. Heterogeneous photocatalysis, an advanced oxidation process, has been widely studied for the removal of wide range of pollutants from water and air [12]. The basic mechanism of heterogeneous photocatalysis involves absorption of light with energy larger than band gap of semiconductor photocatalyst (for TiO₂, $\lambda > 387.5$ nm), an electron is ejected from the ground valence band to the higher conduction band. However, it has been observed that the photocatalytic oxidation processes are of low efficiency, and it takes long time and thus results in high cost to purify water or air. To enhance the efficiency of photocatalytic oxidation process, many studies have been reported [13, 14]. Furthermore, strong oxidants such as ozone [15], hydrogen peroxide [16], persulfate ion [17] or periodate [16] were added in the reaction system to increase the overall decomposition rate.

Photolysis of water using vacuum ultraviolet light (VUV, $\lambda < 200$ nm) is another means to generate hydroxyl radicals. In case of VUV-irradiation, water itself is homolyzed into hydrogen atom and hydroxyl radical, and other oxidative species such as hydrogen peroxide is also expected to be formed simultaneously [18]. This process recently received much attention for the decomposition of persistent organic pollutants.

In the present study the decomposition of CLF was investigated by various advance oxidation techniques. The main objectives of the present study were to (i) compare the removal efficiencies of UV, VUV, UV/TiO₂, VUV/ TiO₂ in the presence and absence of dissolved oxygen (ii) to investigate the

decomposition kinetics of the applied AOTs and (iii) to investigate the practical applications of the applied AOTs towards removal of pharmaceuticals from wastewater.

Experimental

CHEMICALS AND REAGENTS. Clofibric acid (CLF) was purchased from Sigma Aldrich (98%; CAS: 882-09-7). For the HPLC analysis acetic acid (Scharlau), methanol (Scharlau) and acetonitrile (Scharlau) were used as mobile phase. The solutions were prepared using Milli-Q water produced by MILLIPORE (resistivity: 18 M Ω cm⁻¹).

The effect of oxygen was investigated by bubbling O_2 - or N_2 -gases (purity = 99.999 %) through sample solutions. All the experiments were performed in triplicate.

Synthesis of TiO_2 / Ti Film. TiO₂ film was synthesized according to previously reported study from our research group [19]. Tetraorthotitanate, acetyl acetone, water and n-propanol was mixed together in a ratio of 1:0.3:0.4:7 to preapre a homogenous solution. The titanium sheet, pretreated with 10 % wt oxalic acid, was then dipped into the above prepared solution and then withdrawn at a speed of 1mm s⁻¹. The dried TiO₂ film was then annealed in air at 500°C for 1 h at a heating rate of 2°C min⁻¹ prior to photocatlytic procedures.

Charecterization. To examine the morphology of synthesized TiO₂ / Ti films, filed emission scanning electron microscopy was carried out on FE-SEM, S-5500, Hitachi, second electron resolution: 0.4 nm / 30kV at accelerating voltage of 5.0 kV. X-ray diffraction analysis was carried out on Rigaku D/max-RB using k_{α} radiations at $\lambda = 0.154$ nm. X-ray photoelectron spectroscopy was carried out to examine the chemical states of TiO₂ surface, using Al k_{α} as an exciting x-ray source.

Photochemical Reactor. The experiments were carried out in a cylindrical photo reactor (Fig. 1), having total capacity of 150 mL sample solution. UV / VUV lamp was inserted in the middle of the photo reactor, where cold water was continuously circulated through photo reactor to keep the temperature of the reactor at ambient conditions. A plate of TiO_2 / Ti catalyst was placed inside the photo reactor having CLF sample solution. In order to prepare oxygen-free and solutions saturated with molecular oxygen, nitrogen or oxygen gas was bubbled (flow rate = 50 mL min⁻¹) through the solution from the bottom of the photo reactor.

Fig. 1: Diagram of photo - reactor for evaluating the photocatalytic activity.

Irradiation Sources. Both UV and VUV lamps used were low-pressure mercury vapor lamps supplied by Cnlight Co. Ltd, China and had same power (15W) and identical appearance size. One lamp emits 254 nm UV light (referred as UV), and other emits 185 nm vacuum UV light (referred as VUV). The lamp was placed in the centre of the photo reactor with quartz tube protection (external diameter 25mm), the distance from the inner wall of the photo reactor to the external wall of the quartz tube was 15 mm.

Analysis

High Performance Liquid Chromatography. During the degradation experiments, the samples were analyzed using an Agilent 1200 series high performance liquid chromatography. A mobile phase of a 50-50% mixture of water-ethanol was used. The separation of the degradation products was carried out on a C18 Agilent column at 1 mL min⁻¹ flow rate. The detection wavelength was 230 nm.

Ultra-Performance Liquid Chromatography With Tandem Mass Spectrometry. For determinations of the organic by-products, CLF was analysed on UPLC- MS / MS. The parent ion m/e 213.20, daughter ion m/e 127.30, cone voltage (22 V), and collision energy (15 eV) were used for CLF detection. Full scan mode was applied for acquiriring complete informations about intermediates. CLF samples at different irradiation times were injected into mass spectrometer ion source by pure methanol with cone voltage of 10 V.

Pseudo-First Order Kinetic Model. To study the decomposition kinetics of CLF under various applied AOPs, *pseudo-*first order kinetics was applied as presented in equation (1):

$$\ln \left(C_0 / C \right) = kt \tag{1}$$

where " C_0 " represents initial concentration of CLF and "C" represents concentration of CLF after time "t". *k* is the apparent rate constant.

The half-life $(t_{1/2})$ was calculated from the rate constant equation as shown below:

$$t_{1/2} = \frac{\ln 2}{k}$$
(2)

Fig. 2: FESEM images of TiO_2 films grown on Ti – substrate.

Results and Discussion

Control experiments conducted in the presence of TiO_2 and without irradiation reveals that CLF concentration was not significantly affected by passing O_2 / N_2 gasses or by TiO_2 absorption after being kept in dark for 30 min.

Structure and Morphology of Synthesized Tio_2 / Ti Film

Fig. 2 shows FESEM images of TiO_2 films fabricated on Ti – substrate. It can be seen that TiO_2 particles are tightly and uniformly attached to the Ti-

substrate. XRD pattern of synthesized TiO₂ / Ti films is shown in Fig. 3 and is well matched with JCPS card no. 21-1272 suggesting high phase purity of anatase TiO₂. Some rutile character was also observed in our XRD pattern which might be coming from Ti – substrate on which TiO₂ film was directly grown. XPS spectra of TiO₂ films grown on Tisubstrate are shown in Fig. 4. The binding energies associated with Ti $2p_{3/2}$ and Ti $2p_{1/2}$ were found to be 458.9 eV and 464.6 eV, respectively (Fig. 4a). The XPS of O 1s core electrons for the anatase TiO₂ crystals showed the binding energy of 530.17 eV, Fig.4b. The chemical state of these species suggests the growth of TiO₂ crystals on Ti substrates.

Fig. 3: XRD pattern of prepared TiO_2/Ti film.

Decomposition of Clf By Uv and Uv / Tio_2 Photocatalysis

Fig. 5 shows photodecomposition kinetics of CLF by UV and UV/TiO₂ in the presence and absence of dissolved oxygen. The Fig shows that the Kinetics of CLF decomposition well fits pseudo firstorder reaction rate and photo-degradation of CLF was enhanced in the presence of TiO_2 / Ti catalyst. It was also observed from these experiments that UVphotolysis / photocatalysis of CLF was somewhat faster when the samples were saturated with O₂-gas as compared to N2-saturated solutions. The results also shows that the decomposition rate constant of CLF were higher for O₂ - saturated solution than N₂saturated solution for UV-photolysis alone and for UV / TiO₂ photocatalytic processes. These results are similar to the results reported by Han and coworkers [20] where O_2 saturation of solution greatly enhanced UV-photolysis and photocatalytic degradation processes of p-chlorobenzoic acid. Since in UV / TiO₂ processes, the main oxidant involved in the degradation of CLF is the hydroxyl radical ('OH) and dissolved oxygen facilitate its formation because it can accept photo - generated electrons, as shown by following series of reactions.

Fig. 4: XPS spectra of TiO_2 / Ti film (a) Ti 2p, (b) O 1s.

Fig. 5: Kinetics of CLF decomposition by UV and UV / TiO_2 in the presence and absence of dissolved O_2 .

In case of UV / TiO2 photocatalysis,

$$T iO_2 + hv \rightarrow e^- + h_{vb}^+ (3)$$

$$h_{vb}^{+} \rightarrow h_{tr}^{+}$$
 (4)

$$O_2 + e^- \rightarrow O_2^-$$
 (5)

$$O_2^{\cdot \cdot} + O_2^{\cdot \cdot} + 2 H^+ \rightarrow H_2 O_2^{\cdot} + O_2^{\cdot} (06)$$

$$H_{2}O_{2} \longrightarrow 2 O H_{(07)}$$

where h_{vb}^{+} means holes in the valence band, while h_{tr}^{+} represents trapped holes.

Furthermore, in case of direct UVphotolysis, clofibric acid after absorbing UVradiations is promoted to an excited state. This molecule in the excited state has very short life time and thus returns to the ground state or decomposes to give a different molecule.

Decomposition of CLF by Vuv and Vuv / Tio_2 Photocatalysis

In case of VUV-photolysis of water, hydroxyl radical and other species are formed according to the following reactions:

VUV	
H ₂ O→'H+'OH	(8)
'OH + 'OH→H ₂ O ₂	(9)
H [•] + O ₂ →HO ₂ •	(10)

Hydroxyl radical thus formed then reacts with CLF, as a result VUV photolysis is much more efficient than TiO₂ / UV process [20]. However the penetration power of 185 nm light in water is very short due to its high absorption coefficients (1.8 cm⁻ at 25 °C) [21]. The decomposition kinetics of CLF by VUV - processes as shown in Fig. 6 indicates that VUV / TiO₂ photocatalytic degradation was much more efficient as compared to VUV photolysis alone. The results also show that photolytic / photocatalytic degradation of CLF with O₂ slightly was higher than for N₂ saturated solution under both cases of VUV or VUV / TiO₂ techniques. Kinetic plots also show that photocatalytic reactions are much more efficient than any photolysis process. As mentioned earlier, in case of VUV and TiO₂ / VUV processes, the main specie responsible for degradation is hydroxyl radical. However, oxygen has low absorption coefficient at 185 nm [22] and low concentration in water, so oxygen itself is unable to absorb 185 nm light and form hydroxyl radical or ozone. So, bubbling of O₂ has no significant effect on degradation of CLF under VUV or VUV / TiO₂ processes.

The kinetic parameters obtained from the applied AOTs for decomposition of CLF are summarized in Table-1.

Figures of Merit for the Applications of Advance Oxidation Technologies

AOPs are mostly energy driven processes, and thus operating cost are dependent on the electrical energy. Figs of merit based on electrical energy consumption of AOPs are necessary for their practical applications. Since the concentration of CLF is not very high so following Fig of merit is proposed.

Electrical Energy Per Order (e_{eo}) . "Electric energy per order (E_{EO}) is the electric energy in kilowatt hours [kWh] required to degrade a contaminant C by one order of magnitude in a unit volume [e.g., 1 m³] of contaminated water or air".

This Fig-of-merit is best used under cases where [C] is low (i.e., cases that are overall firstorder in C) because the amount of electric energy required to bring about a reduction by one order of magnitude in [C] is independent of concentration C. Thus, same amount of electric energy will be consumed to decompose the contaminant concentration from 10 mg L⁻¹ to 1 mg L⁻¹ in a given volume as it would be consumed to reduce 10 μ g L⁻¹ to 1 μ g L⁻¹. E_{EO} can be defined as:

 E_{EO} values can be calculated using the following formula [23];

$$E_{EO} = \frac{pt1000}{V \lg(C_i / C_f)} kWh / m^3 / order$$
(11)

where, p is the rated power [kW] of the AOP system, V is the volume [L] of water or air treated in the time t [h] and log is the symbol for the decadic logarithm.

Since, $log(C_i / C_f) = 0.4343k_1' t$, where t [min] is the reaction time in the reactor and k_1' is the first-order rate constant [min⁻¹]. So, equation (11) can be re-arranged as;

$$E_{EO} = \frac{38.4P}{Vk_{1}'}$$
(12)

where V is the batch reactor volume (L).

Table-1 shows comparisons of different AOPs applied in the present study for CLF degradation in terms of E_{EO} -values. As can be seen from Table 1, VUV/TiO₂ in addition to O₂ purging utilizes less energy and thus less cost to degrade CLF by one order of magnitude in a unit volume. On the other hand UV-alone with N₂ purging does considerable more expensive than others owe to the higher energy consumption in the removal of CLF.

Furthermore, the long term photo stability of synthesized material was also checked for potential practical applications. It can be seen form Fig. 7 that nearly 90 % of BZF was degraded in 8 min by UV/TiO_2 photocatalysis in the presence of oxygenated atmosphere and its activity almost remained same till the sixth run.

Fig. 7: The long term photostability of synthesized TiO_2/Ti photocatalyst.

Tuble 1. EEO Values of applied 110	First and a	te constante le ?	E sulses
Applied AOTs	First-order ra		E_{EO} - values
111/0		hr^{-1}	[KWN/m/order]
$\mathbf{U}\mathbf{V}/\mathbf{O}_2$	$0.261 \pm (1.5 \times 10^{-5})$	$0.0043 \pm (1.0 \times 10^{-1})$	893.0233
$\mathbf{U}\mathbf{V}/\mathbf{N}_2$	$0.133 \pm (1.5 \times 10^{-5})$	$0.0022 \pm (1.0 \times 10^{-1})$	1732.07
VUV / O_2	$0.643 \pm (2.0 \times 10^{-3})$	$0.0107 \pm (1.5 \times 10^{-4})$	358.3092
VUV / N_2	$0.53 \pm (1.5 \times 10^{-2})$	$0.0088 \pm (2.0 \times 10^{-4})$	434.7334
$UV / TiO_2 + O_2$	$0.373 \pm (1.5 \times 10^{-3})$	$0.0062 \pm (2.0 \times 10^{-4})$	617.6613
$UV / TiO_2 + N_2$	$0.289 \pm (3.5 \times 10^{-3})$	$0.0048 \pm (1.0 \times 10^{-4})$	797.1764
$VUV / TiO_2 + O_2$	$1.673 \pm (1.5 \times 10^{-3})$	$0.0278 \pm (1.5 \times 10^{-5})$	138.0451
$VUV / TiO_2 + N_2$	$1.610 \pm (1.0 \times 10^{-3})$	$0.0268 \pm (1.5 \times 10^{-3})$	143.2836
(a) $(H_3C) \rightarrow (H_3C) \rightarrow (H_3C$	OH OH = 109.0232	\rightarrow \rightarrow H_3^C HO m/z =	
(b) ₄₅₀ , 400	0 - - 0 -	CLF	
350	0]	1	
	· .		
رم 300 ^ر	o –	Λ	
Č			
⇒ ²⁵⁰	o⊣ Çi İş	٩	
sit	ate pe	6	
L 200	o- <u>5</u> 8	uin II	
<u>1</u>	់ ឆ្ល រ ច	<u>ह</u>	
150	9 k ' 8 ' 8	ř	
	4 4 ti -	£ ∥	
100			
50			
50	- for hard war had been a fear for the fear of the fea	many had been af Virenessed West	Roll-Children
,	o 		
	0 1 2	3 4 5 6	ź min.

Table-1: E_{EO}-values of applied AOTs for decomposition of CLF in aqueous media.

Fig. 8: Proposed degradation pathway for clofibric acid by VUV / TiO₂ process (a), total ion-chromatogram of the degradation byproducts of clofibric acid (b).

Evaluation of Photo-Degradation by-Products and Proposed Pathway

CLF samples obtained at different irradiation times of VUV exposures in the presence of TiO_2 film were then analyzed for CLF degradation products by UPLC- MS / MS and the obtained total ion chromatogram is shown in Fig. 8(a). The resulted

hydroxylated by-products may be due to attack of 'OH radical at C-O bond of the clofibric acid. The peak that appear at (m/z) of 127.0759 shows the formation of chlorophenol. Sirés et al. [24] also propsed the formation of chlorophenol after oxidation of clofibric acid by fenton process. Further parallel attack of 'OH radical on chlorophenol with the release of Cl⁻ results in the formation of hydroquinone with m/z of 109.0234 as previously reported by Doll and Frimmel [25] also, and 4chlorocatechol at m/z of 142.9913. The formation of lactic acid at m/z of 90.9475 confirms the degaradtion of clofibric acid to short chain hydrocarbons. Fig. 8 (b) shows a plausible pahway for deagradtion of clofibric acid by VUV / TiO₂ process. The peak areas of resulting byproducts are shown in Fig. 9. It can be seen that all the intermediates exhibited nearly identical trend. The peak area of 4 – chlorophenol was much higher than the peak area of other intermediates, this might be due to the fact that initially there is greater generation of 'OH and thus resulting in quick formation and destruction of chlorophenol. The peak area of lactic acid shows that it is accumulated slowly without appearent degaradation initially however, at absorbed dose of 120 minutes it reached a maximum and then decreases.

Fig. 9: Evolution and decay of clofibric acid intermediates detected by UPLC-MS/MS.

Conclusions

The degradation of clofibric acid as target pollutant was investigated with UV (254 nm), UV/TiO₂, VUV (185 nm) and VUV / TiO₂ photolysis / photocatalysis in the presence and absence of dissolved oxygen. The complete degradation of CLF during UV photolysis was reached in 5 min during UV/ TiO₂ photocatalysis, while during VUV / TiO₂ photocatalysis, the complete degradation was achieved in 1 min starting with the concentration of 5ppm. In the case of UV photolysis / photocatalysis, the degradation process was faster in the presence of dissolved molecular oxygen while in case of VUV photolysis / photocatalysis the dissolved oxygen has no significant role on the degradation process of CLF. VUV / TiO₂ with dissolved O₂ was found as the most cost effective advanced oxidation process for the removal of CLF from aqueous media among the different AOPs applied in this study. All the applied AOPs follow *pseudo*-first order kinetics for the decomposition of CLF in aqueous media. During our study, four main by-products of CLF were identified.

Acknowledgements

The authors thank the Higher Education Commission of Pakistan (HEC, Pakistan), Prof. Pengyi Zhang, School of Environment, Tsinghua University, Beijing, China for the financial support and HEC fellowships to Murtaza Sayed and M. Ismail of this study. MS is also thankful to HEC for financial support of this project under SRGP#730.

References

- 1. Y. Li, X. Qu, R. Yu and K. Ikehata. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal, *Water Environ. Res.*, **87**, 1817 (2015).
- M. Sayed, P. Fu, H. M. Khan and P. Zhang, Effect of Isopropanol on Microstructure and Activity of TiO₂ Films with Dominant {001} Facets for Photocatalytic Degradation of Bezafibrate, *Int J Photoenergy*, Article ID 490264, pages 11 (2014).
- M. Sayed, J. A. Khan, L. A. Shah, N. S. Shah, H. M. Khan, F. Rehman, A. R. Khan and A. M. Khan, Degradation of Quinolone Antibiotic, Norfloxacin, in Aqueous Solution Using Gamma-Ray Irradiation. *Environ. Sci. Pollut. Res.*, DOI 10.1007/s11356-016-6475-x.
- M. Sayed, P. Fu, L. A. Shah, H. M. Khan, J. Nisar, M. Ismail and P. Zhang, VUV-Photocatalytic Degradation of Bezafibrate by Hydrothermally Synthesized Enhanced {001} Facets TiO₂/Ti Film, *J. Phys. Chem.* A., **120**, 118 (2015).
- M. Sayed, M. Ismail, S. Khan, S. Tabassum and H. M. Khan, Degradation of Ciprofloxacin in Water by Advanced Oxidation Process: Kinetics Study, Influencing Parameters and Degradation Pathways, *Environ. Technol.*, 37, 1 (2015).
- C. Tixier, H. P. Singer, S. Oellers and S. R. Müller, Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters, *Environ. Sci. Technol.*, 37, 1061 (2003).
- J. J. Rueda-Márquez, M. Sillanpää, P. Pocostales, A. Acevedo and M. A. Manzano. "Post-Treatment of Biologically Treated Wastewater Containing Organic Contaminants Using a Sequence of H₂O₂ based Advanced

Oxidation Processes: Photolysis and Catalytic Wet Oxidation, *Water Res.*, **71**, 85 (2015).

- 8. A. B. C. Alvares, C. Diaper and S. A. Parsons, Partial Oxidation by Ozone to Remove Recalcitrance from Wastewaters-A Review, *Environ. Technol.*, **22**, 409 (2001).
- 9. L. Rizzo, A. Fiorentino, M. Grassi, D. Attanasio and M. Guida. "Advanced Treatment of Urban Wastewater by Sand Filtration and Graphene Adsorption for Wastewater Reuse: Effect on a Mixture of Pharmaceuticals and Toxicity, *J. Environ. Chem. Eng.*, **3**, 122 (2015).
- T. Oppenländer, Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs)-Principles, Reaction Mechanisms, Reactor Concepts, John Wiley and Sons. (2003).
- B. Zhang, Z. Zhong, K. Ding and L. Yu, Photooxidative Removal of Hg0 from Simulated Flue Gas Using UV/H2O2 Advanced Oxidation Process: Influence of Operational Parameters, *Korean J. Chem. Eng.*, **31**, 56 (2014).
- Y. Yuan, H. Li, M. Luo, S. Qin, W. Luo, L. Li and H. Yan, TiO₂-Mediated Photodegradation of Aqueous Trinitrophenol Irradiated by an Artificial Light Source, *Water Air Soil Pollut.*, 225, 1 (2014).
- M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, *Chem. Rev.*, 95, 69 (1995).
- 14. M. Anpo and M. Takeuchi, The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating Under Visible Light Irradiation, *J. Catal.*, **216**, 505 (2003).
- S. Gomes de Moraes, R. Sanches Freire and N. Duran, Degradation and Toxicity Reduction of Textile Effluent by Combined Photocatalytic and Ozonation Processes, *Chemosphere*, 40, 369 (2000).
- A. T. Nguyen and R. S. Juang, Treatment of o-Cresol/4-Chlorophenol Binary Mixtures in Aqueous Solutions by TiO2 Photocatalysis Under UV Irradiation, *Desalin. Water Treat.*, 57, 1 (2015).

- H. Lin, J. Wu and H. Zhang, Degradation of Clofibric Acid in Aqueous Solution by an EC/Fe³⁺/PMS Process, *Chem. Eng. J.*, **244**, 514 (2014).
- K. Zoschke, H. Bornick and E. Worch, Vacuum-UV Radiation at 185 nm in Water Treatment - A Review, *Water Res.*, 52, 131 (2014).
- L. Zhang, P. Zhang and S. Chen, Influence of Pretreatment of Titanium Substrate on Long-Term Stability of TiO₂ Film, *Chinese J. Catal.*, 28, 299 (2007).
- W. Han, P. Zhang, W. Zhu, J. Yin and L. Li, Photocatalysis of *p*-chlorobenzoic Acid in Aqueous Solution Under Irradiation of 254nm and 185nm UV Light. *Water res.*, 38, 4197 (2004).
- 21. J. Weeks, G. Meaburn and S. Gordon, Absorption Coefficients of Liquid Water and Aqueous Solutions in the Far Ultraviolet, *Radiat. Res.*, **19**, 559 (1963).
- 22. P. Zhang, J. Liu and Z. Zhang, VUV Photocatalytic Degradation of Toluene in the Gas Phase, *Chem. Lett.*, **33**, 1242 (2004).
- 23. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric-and Solar-Driven Systems (IUPAC Technical Report), *Pure Appl. Chem.*, 73, 627 (2001).
- 24. I. Sire's, F. Centellas, J. A. Garrido, R. M. Rodri guez, C. Arias, P. L.s. Cabot and E. Brillas, Mineralization of Clofibric Acid by Electrochemical Advanced Oxidation Processes Using a Boron-Doped Diamond Anode and Fe⁺² and UVA Light as Catalysts, *Appl. Catal. B-Environ.*, **72**, 373 (2007).
- 25. T. E. Doll and F. H. Frimmel, Kinetic Study of Photocatalytic Degradation of Carbamazepine, Clofibric Acid, Iomeprol and Iopromide Assisted by Different TiO₂ Materials: Determination of Intermediates and Reaction Pathways, *Water Res.*, **38**, 955 (2004).